Geoportal  

 

Berlin Environmental Atlas

02.12 Groundwater Levels of the Main Aquifer and Panke Valley Aquifer (Edition 2013)

map view Text in Deutsch verfuegbar content    back no forward

Map Description

The present groundwater contour map describes the groundwater situation of the main aquifer with violet groundwater isolines and the Panke Valley aquifer in north-eastern Berlin with blue isolines. The distance of the groundwater isolines is 0.5 m. These show the piezometric surface area of the unconfined and confined groundwater, respectively (see also Fig. 3). In areas of the main aquifer with confined groundwater, the groundwater contours are displayed in broken lines. In areas with no main groundwater aquifer, or with an isolated main groundwater aquifer of low thickness, no groundwater isolines are displayed. Those areas are shown with black dots.

The map is based on the topographical General Map of Berlin, scale of 1:50,000, in grid format, and the geological outline for the Berlin state area, scale of 1:50,000 (2007), that was derived from the geological General Map of Berlin and Surrounding Areas, scale of 1:100,000. In addition, the appropriate support points (groundwater measurement points and surface-water levels) as well as the individual waterworks are indicated, with their active wells and water conservation areas.

Differing regulations exist in the Johannisthal water conservation area established on January 18, 2013. The respective areas are shown on the map Water Conservation District Johannisthal (Preliminary Order).

Hydrogeological Situation

On the plateaus, the main aquifer is extensively covered by the glacial till and bolder clay (aquitards) of the ground moraines. Wherever the piezometric surface of the main aquifer lies within this aquitard, groundwater conditions are confined. In sandy segments above the till, the periodic formation of perched groundwater is possible, which can, after extreme precipitation, rise to the surface. The groundwater levels of these locally highly differentiated areas have not been separately ascertained and portrayed. Within the till, sandy islands may become filled with groundwater, or so-called stratum water (see also Fig. 3).

In the Panke Valley, on the northern side of the spillway, the Barnim Plateau, a major independent coherent aquifer has developed. It is located above the main aquifer, which is covered by the glacial till of the ground moraine (see also Fig. 7 and 8). On the present map, this aquifer is indicated by separate blue groundwater isolines. A spur of the glacial till toward the Warsaw-Berlin Glacial Spillway creates an interlock of the Panke Valley aquifer with the main aquifer there.

For more information, see the Groundwater Brochure (only in German).

Current Situation in May 2013

As a rule in Berlin, the groundwater incline, and hence, too, the flow direction, is from the Barnim and Teltow Plateaus and the Nauen Plate toward the receiving bodies, the Spree and Havel Rivers. Depression cones have formed around the wells at those waterworks in operation during the measurement period, and have sunk the phreatic surface below the level of the neighbouring surface waters. Thus, in addition to inflowing groundwater from the shore side, the water pumped here also includes groundwater formed by infiltration (bank-filtered water) from these surface waters (see also Fig. 4c).

In May 2013, too, the potentiometric surface, which has been lowered in Berlin by drinking-water discharge over the past hundred years, was at a relatively high level compared to 1989 (Limberg et al. 2007: pp. 76 et seq.). Areas of groundwater rise for this period of time in the glacial spillway of more than half a meter and of more than one meter are shown on the map (Fig. 10).

Figure 10
Fig. 10: Groundwater Rise in the Glacial Spillway between 1989 and 2012: The rise is more than half a meter in the hatched area and more than one meter in the crosshatched area.

The reduced raw-water discharge by the Berlin Water Utility since 1989 as a result of the decreased need for drinking and industrial water is responsible for the constant rise of the groundwater level. Moreover, five of the smaller Berlin waterworks (Altglienicke, Friedrichsfelde, Köpenick, Riemeisterfenn and Buch) were shut down altogether between 1991 and 1997. In addition, drinking water production at the two waterworks Johannisthal and Jungfernheide has been discontinued temporarily since September 2001; at the latter, the same has been true for artificial groundwater recharging. However, under the immediate water management measures of the Senate Department for Urban Development and the Environment, groundwater is still being discharged at the Johannisthal location, so as not to endanger current local waste disposal and construction measures. Likewise at the Jungfernheide location, groundwater was discharged by the Department through the end of 2005. Since January 2006, a private company has continued this work temporarily.

The Water Conservation Districts of the Buch, Jungfernheide and Altglienicke waterworks were cancelled in April 2009.

The overall discharge of raw water by the Berlin Water Utility for public water supply dropped by almost half (47 %) in Berlin over a period of 23 years. In 1989, 378 million cu.m. were discharged, as opposed to 219 million cu.m. in 2002. In 2003, the discharge briefly increased slightly to 226 million cu.m. due to the extremely dry summer, but then dropped again by 2012, reaching 206 million cu.m. (Fig. 11).

Figure 11
Fig. 11: Drop in Raw-Water Discharge by the Berlin Water Utility over an 24-year Period

excell
[Table is also available as Excel-File (MS-Excel is required).]

The development of the groundwater levels from May 2012 to May 2013 is exemplified at four measurement points which are largely unaffected by the withdrawal of water by the waterworks (Fig. 12).

Figure 12
Fig. 12: Four measurement points in an exemplary manner:
340 und 5139 in the glacial spillway, 777 on the Teltow Plateau und 5004 on the Barnim Plateau

The groundwater levels at two measurement points in the unconfined aquifer of the glacial spillway were nearly unchanged as of May 15, 2012 and also 2013. The groundwater level was 7 cm higher at Measurement Point 5139 and 1 cm higher at Measurement Point 340 than they had been on May 15 of the previous year (Fig. 13).

Figure 13
Fig. 13: The groundwater levels at two measurement stations in the glacial spillway
on May 2012 to May 2013

On the Teltow Plateau, the groundwater level at the measurement points in the covered, confined aquifer dropped by 18 cm during the same period (Measurement Point 777), and rose by 10 cm (Measurement Point 5004) on the Barnim Plateau (Fig. 14).

Figure 14
Fig. 14: Groundwater level at two measurement points in an exemplary manner on the plateaus
on May 2012 to May 2013

From June 2012 through May 2013, the precipitation at the Berlin-Tempelhof Measurement Point was 19 mm above the long-term mean (1960 to 1990). Above-average precipitation in July 2012 (Fig. 15), following the very dry spring, caused the groundwater level to rise only at this time. The higher precipitation from November 2012 to January 2013 had a greater effect on the groundwater level in the glacial spillway, where lower depths to groundwater generally occur that in the plateaus (Fig. 13 and 14).

Figure 15
Fig. 15: Monthly precipitation between June 2012 and May 2013 at the Berlin-Tempelhof Measurement Point, compared with the long-term mean, 1961 through 1990.

Excel
[Table is also available as Excel-File (MS-Excel is required).]

map view Text in Deutsch verfuegbar content    back no forward

umweltatlas_logo_klein